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Abstract. The innate immune system of the brain is mainly composed of microglial cells, which play a key role in the maintenance
of synapses and the protection of neurons against noxious agents or lesions owing to their phagocytic activity. In the healthy
brain, microglia are highly motile and strongly interact with neurons either by physical contact, induction of oxidative stress
or through specific mediators, such as chemokines and cytokines. In response to inflammatory insult however, microglial cells
get activated and produce inflammatory cytokines. The action of cytokines on specific receptors expressed in the brain triggers
the development of sickness behavior and altered cognitive and emotional processes. The effects are acute and reversible as
normal behavior is restored once the synthesis of inflammatory brain cytokines returns to baseline after a few hours. However,
in pathological situations, these cytokines may reach toxic levels and have irreversible consequences such as neuronal death,
as observed in neurodegenerative disorders such as Alzheimer’s disease. Omega-3 (n-3) polyunsaturated fatty acids (PUFAs)
are essential nutrients and fundamental components of neuronal and glial cell membranes. They accumulate in the brain during
the perinatal period in a dietary supply-dependent fashion. Their brain levels may diminish with age, but can be increased by
diets enriched in n-3 PUFAs. Changes in the immune profile have been associated with n-3 PUFAs intake in humans and animal
models. Therefore, the increasing exposure of the population to diets low in n-3 PUFAs could contribute to the deleterious effects
of the chronic activation of microglia in the brain.
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1. Introduction

The central nervous system (CNS) has long been
considered as an immunoprivileged organ. Indeed,
in physiological conditions, the blood brain barrier
(BBB), owing to its tight junctions, considerably
restricts the entry of immune cells, notably lympho-
cytes, into the brain. Research in neuroimmunology
has shown that the brain possesses its own line of
defense, activated by immune stimuli, and closely
linked to the peripheral immune system. Although
not as isolated as first thought, there are important
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distinctions between the peripheral and the central
immune systems. Inflammatory cytokines, which are
important mediators of the communication within the
immune system, also act in the brain where they
can activate microglial cells and astrocytes that in
turn, can produce cytokines, chemokines, complement
proteins and nitric oxide [1–3]. In physiological con-
ditions, the synthesis of brain immune mediators is
finely regulated, allowing a rapid return to basal lev-
els, without leading either to BBB failure or cerebral
lesion. However, when synthesized in large amounts
or in a chronic fashion, these factors may have toxic
effects on neurons, resulting in substantial neuronal
dysfunction that can lead to cell death [4–7]. During
aging, chronic microglial reactivity and production of
low levels of inflammatory cytokines occurs and can
produce alterations of neuronal functions [8]. Indeed,
this age-associated inflammation, characterized by the
increased production of brain cytokines, increases the
vulnerability of the aging brain to immune stimuli, and
the risk of developing delirium and/or neurodegenera-
tive disorders with an inflammatory component, such
as Alzheimer’s disease (AD) [9–11]. Accordingly,
clinical and epidemiological studies have suggested a
possible association between the systemic expression
levels of inflammatory cytokines and the incidence of
functional/behavioral alterations (cognitive or mood
disorders) in psychiatric and elderly subjects [12–15].
In this context, limiting the development of chronic
neuroinflammation could protect the brain against neu-
rodegenerative disorders. This could be achieved with
the diet, a modifiable environmental factor to which
each individual is exposed throughout his life.

Increasing attention has been paid to omega-3
(n-3) and omega-6 (n-6) polyunsaturated fatty acids
(PUFAs). These micronutrients are essential since their
precursors cannot be synthesized de novo by the organ-
ism. Moreover, their synthesis is extremely limited in
most mammals (less than 5% of the precursors are
converted) [16]. Increasing data in animal models as
well as in humans suggest that dietary PUFA exert
immunomodulatory effects [17–20]. Indeed, n-3 long
chain PUFAs form the basis of lipid derivatives (neu-
roprotectins and resolvins) with anti-inflammatory
properties [21–26]. Moreover, they are precursors of
eicosanoids including leukotrienes, prostaglandins and
thromboxanes, which are important modulators of the
inflammatory response. However, they have lower bio-
logical potency than eicosanoids derived from n-6
PUFAs such as arachidonic acid [27, 28]. The brain

is extremely rich in PUFAs, and the accumulation of
PUFAs in brain tissues first takes place during the
perinatal period in proportions which are dependent
on maternal dietary levels [29, 30]. Conversely, the
levels of brain PUFA has been reported to diminish
with aging, although this decrease can be prevented
or corrected by appropriate nutritional strategies [31].
Since the Industrial Revolution, we have observed
a decrease in energy expenditure related mainly to
sedentary lifestyle combined with an increase in the
consumption of high energy foods characterized by
elevated levels of sugar, saturated fats, and n-6 PUFAs,
poor in n-3 PUFAs, vitamins, proteins and micronutri-
ments [32, 33]. The resulting imbalance in the n-6:n-3
ratio from this dramatic modification in the dietary
intake is currently estimated to 10:1 to 20:1 in Western
diets, whereas the current recommended ratio is 1:1
to 2:1 [32, 33]. With the known immunomodulation
resulting from n-3 PUFAs intake, this imbalance could
therefore contribute to prime the brain to the deleteri-
ous effects of inflammatory cytokines, and eventually
to the development of neurodegenerative and/or neu-
robehavioral disorders.

2. The brain innate immune system (BIIS)

In the periphery, tissue injuries caused by trauma or
pathogens induce a rapid local inflammatory response
involving local cells and characterized by the synthesis
and release of proinflammatory factors, among which
cytokines and chemokines, followed by systemic
recruitment of immune cells. The purpose of this local
response is to eliminate pathogens and to promote tis-
sue repair. However, the failure of resolving the insult
and dysregulated injury may lead to chronic inflamma-
tion, which is toxic for the tissue, ultimately resulting
in cell death. In addition, peripheral inflammation can
also influence brain immunity [1]. However, it appears
that the steps involved in the cerebral immune response
are distinct from those of the periphery. Therefore,
the term “neuroinflammation” is broadly used to dis-
criminate the brain from the peripheral inflammation.
“Neuroinflammation” describes the brain inflamma-
tory response involving not only peripheral immune
cells influx into the brain but also the specialized
response of brain innate immune system (BIIS) [34].

Microglial cells are the main cells of the BIIS.
They are the parenchymal resident macrophages of
the brain where they act as a first line of defense
(phagocytosis, antigen presentation, cell recruitment



S. Layé et al. / N-3 polyunsaturated fatty acid and neuroinflammation 35

and secretion of cytokines) [35, 36]. They account for
5 to 20% of the non-neuronal glial cells, depending
on the brain structures analyzed. Microglia are distinct
from the brain macrophages found in the meninges,
choroid plexus, and perivascular space, owing to their
different developmental origin. Indeed, recent data
highlight that microglia derives from macrophages
produced by primitive hematopoiesis in the yolk sac
[37–40] while brain macrophages derive from myeloid
precursor in the bone marrow [41, 42]. Microglia pre-
cursors colonize the CNS during the embryonic and
fetal phases of development [43]. Interestingly, an
increase of CD11b+/F4/80+ microglia occurs in the
post-natal brain of rodents [37]. However, recent evi-
dence suggests that this increase in microglial cell
number is not induced by the recruitment of blood-
derived myeloid precursors but instead results from
the proliferation of resident microglial cells [39, 44].
Recent studies provide new insights into the devel-
opment of the microglial population from yolk sac
progenitors during embryogenesis. In contrast with
macrophages from other tissues, microglia persist
throughout the entire life of an individual [42]. There
is a growing interest to characterize microglia cells
profile and signature. Very recent data reveals that
microglia express a decreased number of mRNA types
as compared to tissue macrophages [45] and dis-
play a specific mRNA signature that is dependent on
TGF� [46].

Microglia are particularly sensitive to changes in
theirmicroenvironmentandreadilybecomeactivatedin
response to infection, trauma or disease [47]. In healthy
brain, the microglia can phagocyte apoptotic neurons
anddebrisandreduceneuroinflammationwhich, in turn
is beneficial to viable neurons [48]. However, in inflam-
matory or pathologic situations, the phagocytic adaptor
protein MFG-E8 is released by microglia and binds
to phosphatidylserine (PS) exposed on apoptotic neu-
rons.Thisactivatesneuronalphagocytosisbymicroglia
via the vitronectin receptor [49]. Annexin A1, another
eat-me signal released by microglia, serves as a bridge
with PS on dying neuron, helping the microglia to
discriminate between apoptotic neurons and healthy
neurons [50]. Recently, new data revealed that activated
microglia in inflammatory state appears to lose their
ability to discriminate between apoptotic and viable
neurons, resulting in phagocytosis of diseased as well
as healthy neurons [51].

In the adult brain, microglial cells have a ram-
ified morphology when quiescent, and ameboid

morphology when activated. Ramified microglia
generally display less phagocytic activity and
weakly express ligands and receptors involved in
macrophage function. Disseminated throughout the
brain parenchyma, they use their processes to receive
signals such as danger-associated molecular patterns
(DAMP) and pathogen-associated molecular patterns
(PAMP) from their microenvironment, which reveal
the existence of an endogenous pathological signal or
the presence of a pathogen, respectively. In order to do
this, microglial cells express a set of pattern recogni-
tion receptors (PRRs) including the Toll-like receptors
(TLRs) that allow the recognition of PAMPs, such as
the bacterial endotoxin [52, 53], and DAMPS, such as
misfolded proteins [54], and promote brain inflamma-
tory reaction [55]. The activation of PRRs by PAMPS
and DAMPs induces a signaling cascade leading to the
secretion of cytokines and chemokines. The microglial
cells further coordinate the inflammatory response
via the expression of membrane receptors for inflam-
matory cytokines interleukin (IL)-1�, tumor necrosis
factor (TNF)� and IL-6 and several chemokines. In
vivo, IL-1�, TNF� and IL-6 are produced by microglia
in response to peripheral immune stimuli such as bac-
terial endotoxin lipopolysaccharide (LPS) [56].

The BIIS response promotes clearance of pathogens,
toxic cellular debris and apoptotic cells and there-
fore protects the brain. Indeed, a selective ablation of
proliferating microglia exacerbates brain damage in
adult and in neonatal hypoxic ischemic injury mod-
els [57]. However, under some circumstances, the
sustained expression of inflammatory factors such
as cytokines can lead to neurodegeneration [7, 58].
The BIIS response is therefore a double-edged sword
depending on a fine balance between protective and
detrimental effects that needs to be tightly controlled.
Real-time in vivo imaging technology has revealed that
both in health and disease, microglia exist in an active
state but their role in the brain depends on the broad
phenotype spectrum they can adopt [59]. Microglia
phenotypes, so called polarization, could be crucial
in the protective or detrimental role of PRR-activated
BIIS response toward neurons. According to what
was described for macrophages, it has been suggested
that activated M1 cells have cytotoxic properties, M2a
are involved in repair and regeneration, M2b promote
immunomodulation, while M2c have an acquired-
deactivating phenotype [60] (Fig. 1). In vivo, microglia
express proinflammatory cytokines associated with
a M1 phenotype (IL-1, IL-6, IL-12 and TNF�) in
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response to an immune stimulus. Recent evidence indi-
cates that neurons exert some control on microglia
activity [61]. The extent of neuroinflammation there-
fore depends on the bi-directional interactions between
neurons and microglia. Recruitment and activation
of microglial cells require well-organized reciprocal
communication between these two cell types [36, 62].
As a result, neurons release ON or OFF signals to reg-
ulate the activation of microglia. On the one hand, OFF
signals (CD200, CX3CL1, CD47, CD55 and HMGB1)
are produced by healthy neurons to keep microglia in
their surveillance mode. On the other hand, damaged
neurons express inducible ON signals (chemokines,
purine and glutamate) to activate microglia and phago-
cytosis [36]. Interestingly, such neuron-glia interaction
is impaired in the aged brain leading to amplified
and prolonged microglial activation and production of
proinflammatory cytokines [63, 64].

3. BIIS in the aging brain and
neurodegenerative diseases

3.1. Neuroinflammation, the aged brain and
Alzheimer’s disease

Aging is associated with senescence of microglia,
impaired microglia phagocytic activity and low-grade
neuroinflammation [65], which is characterized by
a higher expression of proinflammatory cytokines
IL-1�, IL-6 and TNF� to the detriment of anti-
inflammatory factors such as IL-10 and IL-4. This
state is called inflammaging at the periphery and in
the brain [66]. The overproduction of proinflamma-
tory cytokines in the absence of infection or injury
in the aged brain could be linked to the impairment
of microglial activity. Indeed, microglia number and
activity increases during normal aging [67]. These
aged cells, in addition to producing proinflammatory
cytokines, contain lipofuscine granules, and decreased
processes complexity, a morphological change found
in activated microglia [47, 68]. In addition, microglia
in the aged brain express higher levels of CD86, major
histocompatibility complex II (MHC II), TLR and
CR3/CD11b which are markers of activation [69, 70].
Senescent microglia display reduced phagocytic activ-
ities of beta-amyloid in aged transgenic mice which
could be due to their M1 phenotype [71]. Mechanisms
involved in increased microglia activation in the aged

brain are not fully understood, however as CD200
and CX3CR1 expression is impaired it could be that
neuron-glia interactions are disturbed [67, 72].

The involvement of microglia in the communi-
cation of systemic inflammatory signals to neurons
has been recently reviewed [73]. One of the most
important new knowledge is that microglia become
more susceptible to inflammatory stimuli when they
are primed by pathological insults contributing to
the progression of neurodegenerative diseases such as
Alzheimer’s Disease (AD) [73, 74]. The character-
istics of primed microglia remain to be determined.
However, increased number of microglia, together
with changes in morphology and increased expression
of cell surface antigens such as CD68, complement
receptors (CR3) and/or MHC have been consistently
reported in priming context as first reported in prion
disease [75]. Priming phenomenon has been observed
in aging [76], after the administration of proinflam-
matory endotoxins [77, 78] and in animal models of
AD and Parkinson disease [7, 79]. Interestingly, aging
microglia express a specific sensome (defined as pro-
teins sensing microbes) that could confer them a higher
vulnerability to inflammatory stimuli [70]. Indeed, the
concept of microglia priming provides new view of how
systemic inflammation could contribute to the progres-
sion of neurodegenerative diseases, through increased
production of inflammatory cytokines that could dam-
age neurons and/or loss of neuroprotective properties.

The first evidence of an inflammatory response in
AD comes from case-control studies showing immune
anomalies in blood or CSF from living individuals
or cerebral tissue collected post-mortem. For exam-
ple, plasma cytokine profiles, key components of the
complement system and immune cells are altered
early in the disease [80–83]. High levels of pro and
anti-inflammatory factors, and increased PRR and
chemokines expression are found in the brain of AD
patients [4, 84]. Activated microglia in the brain of AD
patients have been detected by (R)-[3H]PK11195 PET
binding to peripheral benzodiazepine receptors [85].
A second set of evidence comes from epidemiology.
Indeed, chronic non-steroidal anti-inflammatory drugs
(NSAID) use has been associated to lower risk of
AD [86, 87]. Finally, data generated in animal mod-
els suggest a causal link between brain amyloid or tau
pathologies and the triggering of an immune response
[5, 88, 89], although this view is also disputed [90].
In transgenic APP/PS1 or 3xTg-AD mice, reports sug-
gest that microglia activation starts between 6 and 12
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Fig. 1. Microglia phenotype plasticity. Microglia can adopt different phenotypes: M1 (classical activation), M2a (alternative activation), M2b
(immunoregulatory) and M2c (acquired-deactivation). According to their phenotype, microglia cells express different clusters of differentiation
(CD) such as CD86 or CD206, or type-II proteins of major histocompatibility complex (MHC) and secrete different cytokines and chemokines.
CCL: chemokine (C-C motif) ligand; IFN: interferon; IL: interleukine; LPS: lipopolysaccharide; TGF : transforming growth factor; TNF: tumor
necrosis factor; Ym1: YKL-40, chitinase 3-like 3.

months, as assessed with CD45, Iba1 and/or F4/80 IHC
[91–94]. Therefore, despite conflicting data, it appears
clear that changes in parameters involved in central or
peripheral inflammation are associated with AD.

However, the role of inflammation or the immune
system in AD pathogenesis is still a matter of debate
as both beneficial and adverse effects of inflammation
have been reported [95–101]. Recent data highlighted
that microglia, because of its impaired activity in the
AD brain, cannot phagocytocize A� that therefore
accumulates [102, 103]. In turn, A� accumulation acti-
vates microglia in a chronic proinflammatory state
that contributes to the disease progression and, ulti-
mately cognitive decline [4]. Higher levels of IL-1
have been implicated in both the initiation and progres-
sion of neuropathological changes [104]. Accordingly,

overexpression of IL-1 in the AD brain has been linked
to an increased microglial activity, frequently associ-
ated with amyloid plaques [105]. In addition, brain
from Tg2576 mice (a model of AD) exhibits significant
increases in IL-1 expression in comparison to healthy
animals [106]. Overexpresssion of IL-1� in the 3xTg-
AD mouse model of AD suggest that amyloid and tau
pathology are differentially regulated, with a reduction
in amyloid deposit but an exacerbation of Tau hyper-
phosphorylation [107]. Such effects could involve the
fractalkine pathway as the expression of its receptor
CX3CR1 have been reported to be associated with
either a decrease [108] or an activation of A� clearance
[109–112] and increase Tau phosphorylation [113].
Therefore, further studies are needed to precise the
role of the fractalkine pathway in these processes.
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Fig. 2. Elongation and desaturation of n-6 and n-3 PUFA and pathways in active eicosanoid metabolism from arachidonic acid, eicosapentaenoic
acid and docosahexaenoic acid. n-6 and n-3 essential fatty acids precursors are linoleic acid (LA) and �-linolenic acid (ALA). These precursors
are metabolized into arachidonic acid (AA) and eicosapentaenoic (EPA) and docosahexaenoic acid (DHA) respectively. AA is metabolized into
derivatives that belong to the eicosanoid family, series 2 and 4. EPA and DHA metabolic derivatives belong to the eicosanoid family, series 3
and 5, resolving family (series D and E) and neuroprotectins. Tx: thromboxane; PG: prostaglandines; COX-2: cycloxygenase 2; LT: leukotrienes;
LOX: lipoxygenase; Lx: lipoxin; NPD1: neuroprotectin D1.

Globally, a crucial issue that remains unclear is whether
the immune response observed in AD is a compen-
satory mechanism with a neuroprotective effect, part of
a vicious circle leading to neuronal death and cognitive
decline, or both [72, 103, 114, 115]. Answers to this
question will determine how neuroinflammation can
be “tamed” for the purpose of developing therapeutic
interventions.

In the last decades, trials aiming at modulat-
ing brain inflammation in AD patients have been
dis- appointing [72, 116–118]. This included assays
with NSAID, steroid anti-inflammatory (prednisone)
or with immunomodulators such as TNF antago-
nists and polyclonal or monoclonal immunoglobulins
[72, 118, 119]. However, consistent with epidemiol-
ogy data [86], it remains likely that the modulation
of inflammation is more suitable for a preventive inter-
vention [120]. Unfortunately, no such preventive study
has been completed yet, the ADAPT study on COX-
1 and COX-2 inhibitors having been ended abruptly

due to unsuspected side effects [72, 121]. Neverthe-
less, further data analysis from the ADAPT study do
not provide a clear answer to the hypothesis that cele-
coxib or naproxen exert a preventive action against
AD [122, 123]. Because the role of BIIS in the devel-
opment of AD is complex, other strategies aiming at
optimizing microglia activity, rather than just block-
ing inflammatory factors synthesis in the brain could
be more beneficial [4, 72].

4. Polyunsaturated fatty acids and
neuroinflammation

4.1. N-3 PUFAs: A brief overview

PUFAs of the n-3 or n-6 families are essential nutri-
ents, as the precursors of these two series (linoleic acid
(18:2n-6, LA) and �-linolenic acid (18:3n-3, ALA))
cannot be generated de novo in mammals, they have to
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be provided by the diet. They are respectively metab-
olized by a series of elongation and desaturation steps
into arachidonic acid (20:4 n-6, AA) and eicosapen-
taenoic acid (20:5 n-3, EPA) and docosahexaenoic acid
(22:6 n-3, DHA) (Fig. 2). These long chain PUFAs are
incorporated into cell membranes as phospholipids.
The liver is the main site of conversion of LA and
ALA into long chain PUFAs, although other organs
such as the brain also express the necessary elon-
gases and desaturases [124]. Since the two series of
PUFAs compete for the use of the enzymes necessary
for their biosynthesis, and because the conversion into
long chain is extremely limited (less than 5% of the
precursors is converted), their supply by the diet is
of particular importance. Foods that were previously
consumed by humans were obtained from hunting
and fishing and were relatively rich in n-3 long chain
PUFAs. Since the Industrial Revolution, the ratio of n-
6:n-3 PUFAs in the diet has increased from 1 to almost
20 in industrialized countries like the United States,
leading to a suboptimal dietary consumption of n-3
PUFAs [33, 125].

The dietary deficiency in n-3 PUFAs is associated
with a significant decrease in DHA in the brain, and
could thus promote neuroinflammatory processes and
the subsequent development of inflammation-related
CNS disorders [8]. However, the effect of n-3 long
chain PUFA supplementation to generate a favorable
inflammatory marker profile is currently subject to
debate. In populations with a high n-3 long chain PUFA
dietary intake due to elevated fish consumption, such
as Greenland Inuits, the incidence of ischemic heart
and autoimmune diseases (such as psoriasis, asthma
or multiple sclerosis) is low [126, 127], but inflamma-
tory markers such as YKL-40 and hsCRP are rather
found to be increased [128]. While some clinical stud-
ies have reported anti-inflammatory effects of n-3 long
chain PUFAs administered in the context of chronic
and autoimmune inflammatory disorders, other reports
fail to reproduce these findings (for review [28]).

4.2. N-3 PUFAs and inflammatory mechanisms

Attenuation of the inflammatory response is one of
the most frequently cited mechanisms of action of n-3
PUFAs, despite limited convincing evidence of such
an action in cerebral tissues until recently [129]. As
stated above, a high n-3 PUFA intake decreases AA
content and at the same time, increases DHA in the

brain. Since n-3 PUFAs compete with AA as sub-
strates for cyclooxygenase (COX) and lipoxygenases
(LOX), increased n-3 PUFA concentration is expected
to reduce the production of the more potent inflam-
matory eicosanoids derived from AA [25, 130–132].
Therefore, food rich in n-3 PUFA such as fish or walnut
have been found to limit the inflammatory response in
preclinical studies [133–136].

More specifically, n-3 PUFAs also decrease the pro-
duction of various important inflammatory cytokines
such as TNF�, IL-1, and IL-6 [20, 130, 131, 137].
Indeed, DHA decreases the expression of brain
inflammatory markers following systemic LPS admin-
istration [138], brain ischemia-reperfusion [20, 139]
and spinal cord injury [140]. However it remains diffi-
cult to gauge the direct effect of DHA on BIIS, since the
primary CNS injury is also attenuated in these studies.
High-fat intake in n-3 PUFA-deprived animals induces
a rise of GFAP, a marker of astrogliosis, in mouse
brains [141]. Recently, we have demonstrated that
in vitro, in murine microglia induced by LPS, the pro-
duction of IL-1� and TNF� by is strongly inhibited
by DHA through its effect on LPS signaling pathway
nuclear factor-κB [137]. In vivo, chronic dietary n-3
PUFA deficiency significantly increases the produc-
tion and release of IL-6 and TNF� in the blood [142].
In addition, mice exposed throughout life to a diet
devoid of n-3 PUFAs display lower brain DHA and
higher LPS-induced IL-6 levels in the plasma and the
hippocampus [138]. In parallel, n-3 PUFAs have been
shown to decrease the levels of COX-2 in vitro [143]
and in vivo [20, 144].

The recent discovery of a novel family of endoge-
nously generated autacoids, namely resolvins and
protectins, with potent anti-inflammatory and prore-
solving activities offer a better understanding of the
mechanisms responsible for the protective effect of
DHA in the brain [25, 145]. In particular, resolvin
D1 (RvD1), which originates from DHA via lipoxy-
genases, promotes the resolution of inflammation and
has been detected in the brain [21]. Very interestingly,
DHA and RvD1 promotes macrophage polarization
toward a M2 state in obese mice adipose tissue associ-
ated to a decrease of pro-inflammatory cytokines and
an increase of anti-inflammatory cytokines [146, 147].
In a model of LPS injection, Orr et al (2013) [129]
showed that DHA exerts its anti-inflammatory effects
in the brain, via its conversion into resolvins. Neu-
roprotectin D1 (NPD1), a DHA derived docosanoid
has also been detected in the brain where it could
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exert anti-inflammatory and protective activities [23].
Chronic infusions of DHA or NPD1 in the brain
significantly decreased neuroinflammatory processes
triggered by a middle cerebral artery occlusion [139].
NPD1 even had a more potent effect than DHA
[139, 148]. However, it remains to be demonstrated
that NPD1 is the intermediary of the anti-inflammatory
effect of DHA in the brain.

Experiments conducted in animal models have
highlighted brain DHA as a potent mediator of the
protective effects of dietary n-3 PUFAs. Low dietary
intake of n-3 PUFA decreases DHA levels in the ani-
mal brain [149–151]. As a result, emotional behavior
(depressive-like symptoms and anxiety) as well as
learning and memory are impaired as shown by others
and us [152–155]. On the other hand, positive effects
of diets enriched in DHA on learning and memory have
been demonstrated in laboratory animals [156–160].

4.3. N-3 PUFAs and age-related
neuroinflammation

As previously mentioned, PUFAs represent potent
immunomodulatory agents. During aging, the levels
and the turn-over rate of brain PUFAs decrease, par-
ticularly in the hippocampus, cortex, striatum and
hypothalamus [161–164]. Brain levels of DHA and
AA diminish in aging rats with alterations in cognition
and in long-term potentiation (LTP) in the hippocam-
pus [162]. In senescence-accelerated mouse (SAMP8),
a spontaneous model of accelerated aging, DHA lev-
els decrease, whereas lipid peroxidation increases with
age including that of DHA [165, 166]. In addition,
the conversion of the precursors LA and ALA into
their long chain derivatives becomes less efficient. The
activity of the �6 desaturase decreases with age in the
liver and the brain [167, 168]. Phospholipid synthesis
pathways are also altered with age, thus reducing the
incorporation of PUFAs into membranes [169]. The
combination and interaction of these different alter-
ations associated with aging contributes to a reduction
in the level of DHA, i.e. a reduction in the index
of membrane fluidity, in the brain of elderly people.
In animals, aging was found to be associated with a
decrease in the membrane content of AA in the hip-
pocampus together with an attenuation of LTP that can
be reestablished by a diet containing AA [170].

With aging, IL-6 expression is increased in the
cortex of both n-3 deficient and n-3 adequate CD1

mice while IL-10 expression is decreased with no
effect of long term ALA deficient or enriched diet
[155]. Conversely, short-term exposure to dietary EPA
reduces IL-1-induced spatial memory deficit and anx-
iolytic behavior [171, 172] and improves LPS and
A�-induced inhibition of LTP in both adult and aged
rats [173]. The expression of markers of microglial
activation (CD68, MHCII and CD11b) increases with
age in animals, as does the number of microglia in
the brain of humans, attesting of the occurrence of
age-related neuroinflammation [174]. Microglial cell
reactivity is involved in the age-dependent increase in
the production of inflammatory cytokines, as demon-
strated by the inhibition of inflammatory cytokine
overexpression by minocycline in aged rats [69]. In
rats, the age-related activation of the microglia, produc-
tion of IL-1� and alterations in hippocampal LTP are
attenuated by EPA [175, 176]. Importantly, a 2-month
fish-oil dietary supply increases DHA in the brain,
prevents proinflammatory cytokine expression and
astrocyte morphology changes in the hippocampus and
restored spatial memory deficits and c-Fos-associated
activation in the hippocampus of aged mice [31]. These
data support the idea of the importance of DHA dietary
supply in aged mammals.

To detect an anti-inflammatory action in neurode-
generative diseases, one must work with an animal
model displaying an easily quantifiable inflammatory
response, which is not always the case in AD mod-
els [90]. In contrast, animal model of stroke offers
an easier opportunity to directly probe this mecha-
nism of action. To visualize the effects of DHA on
stroke-induced neuroinflammation, we recently used
the TLR2-fluc-GFP transgenic mice exposed to either
(i) a control diet; (ii) a diet depleted in n-3 polyun-
saturated fatty acid (PUFA) (iii) a diet enriched in n-3
long chain PUFA (0.7 g kg−1 day−1, with DHA:EPA
ratio of 4:1) during 3 months [20]. Real-time biopho-
tonic/bioluminescence imaging of the TLR2 response
was performed before and after middle cerebral artery
occlusion (MCAO), whereas cytokines concentrations
and stroke area analyses were performed 3 and 7 days
after MCAO, respectively. We have observed that 3
months of DHA/EPA treatment abolished the TLR2
response after ischemic injury, while increasing the
brain n-3:n-6 PUFA ratio, preventing microglial activa-
tion, reducing the ischemic lesion size and increasing
concentrations of the anti-apoptotic molecule Bcl-2 in
the brain [20]. Additional analysis further revealed a
significant decrease in the levels of COX-2 and IL-1�,
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Fig. 3. Potential role of n-3 PUFA in inflammaging. In the aged or diseased brain (AD neuropathology), microglia are primed and polarized into
various phenotypes (e.g. M1 in aging) and secrete pro-inflammatory cytokines that could play a role in cognitive impairment. The protective
effect of n-3 PUFAs toward cognitive deficit in aging or neurodegeneration could be linked to the promotion of an anti-inflammatory M2
phenotype.

but not other pro-inflammatory cytokines [20]. The
result of this study argues for the use of n-3 long chain
PUFA in preventing the initiation of TLR2-dependent
signaling cascade, which lays upstream of the main
pathways leading to a neuroinflammatory response.

In epidemiological and observational studies, a
higher level of blood n-3 PUFAs is associated
with lower proinflammatory cytokine production
[177–180]. In a cohort of elderly subjects, depres-
sive individuals with an elevated plasma n-6:n-3 ratio
were found to exhibit higher levels of TNF� and
of IL-6 [180]. F2-isoprostane, a marker of oxidative
stress, and telomere length, an indicator of immune
cell aging, are both decreased in the blood of subjects
supplemented with EPA/DHA [181]. Additionally, n-3
PUFA supplementation in elderly subjects reduced the
levels of inflammatory cytokines produced by blood
leukocytes stimulated in vitro [182]. The production
of prostaglandin E2 by monocytes is inversely corre-
lated to the EPA content of leukocytes obtained from
aged subjects after the consumption of dietary comple-
ments containing different doses of EPA [183]. To the
extent that the level of peripheral cytokines can reflect
that of brain cytokines, these results would suggest
that dietary n-3 PUFAs modulate neuroinflammation
and associated neurobehavioral effects in elderly indi-
viduals [8] (Fig. 3).

Epidemiological studies further highlight the impor-
tance of n-3 PUFA levels in the development
of age-linked neurodegenerative disorders. Indeed,
decreases in plasma and brain DHA levels have been
shown in patients with AD. These results, however,
remain controversial, since other studies have demon-
strated an increase or an absence of variation in brain
DHA levels in similar populations. Nonetheless, the
risk of dementia was found to be augmented in elderly
subjects presenting low levels of circulating EPA [184].
In addition, regular consumption of diets rich in n-
3 PUFA, such as the Mediterranean diet, appears to
contribute to a decrease in the risk of depression
and/or dementia in the elderly [185, 186]. Using a
mouse model of AD, the Tg2576 mouse, dietary sup-
ply of DHA reduces both the formation of amyloid
plaques or the accumulation of caspase-cleaved prod-
ucts, while protecting against the loss of synaptic
markers [187–189]. However, the administration of
DHA-containing dietary supplements to patients with
AD or mild cognitive impairment has not yielded con-
clusive results [190]. Only in vitro studies suggested a
potential beneficial effect of DHA mediators. Indeed, it
was shown in vitro that RvD1 promotes A� phagocyto-
sis [191] and that NPD1 downregulates inflammatory
signaling and amyloidogenic APP cleavage [192].
Data from preclinical and clinical studies all indicate
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that the effect of DHA differs according to apolipopro-
tein E (APOE) genotype [193–196]. A reduced brain
uptake has been suggested as a mechanism underly-
ing the lack of benefit of DHA in APOE4 carriers
[193, 197]. However, APOE4 could simply counteract
any effect of DHA by its known aggravating impact
on peripheral immune and inflammatory responses,
including microglial activation [198, 199]. Therefore,
although preclinical studies support an effect of DHA
in the prevention and / or treatment of age-related dis-
eases, further clinical trials adapted to APOE genotype
remain required to determine the best approach for an
optimal therapeutic effect.

5. Conclusion

Growing evidence highlight an association between
inflammation in cerebral tissues and mood and
cognitive disorders during infection, aging and neu-
rodegenerative disorders. Whether neuroinflammation
processes are a cause or a consequence of the under-
lying disease and its symptoms is still debated.
However, the current state of knowledge strongly
points to potential disease modification value of treat-
ing neuroinflammation in the preclinical stages of
neurodegenerative diseases. More specifically, the
impact of DHA, either from the diet or from dietary-
supplementation, as a preventive therapeutic strategy
needs to be investigated.
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